$解:(2)∵△ABC≌△DEF$ $∴BC=EF$ $∵BF=13,EC=5$ $∴BC+EF-EC=BF即2BC-5=13$ $∴BC=9$ $(更多请点击查看作业精灵详解)$
$证明:∵CE//DF,$ $∴∠ACE=∠D.$ $在△ACE 和 △FDB 中,\ $ $\begin{cases}{AC=FD}\\{∠ACE=∠FDB}\\{EC=BD}\end{cases}$ $∴ △ACE ≌△FDB(\mathrm {SAS}).$ $∴AE=FB.$
$证明:∵∠AOC=∠BOD$ $∴∠AOC-∠AOD=∠BOD-∠AOD$ $即∠DOC=∠BOA$ $在△AOB和△COD中$ ${{\begin{cases} {{OA=OC}} \\ {∠BOA=∠DOC} \\ {OB=OD} \end{cases}}}$ $∴△AOB≌△COD(\mathrm {SAS})$
$证明:(1)∵BE=CF,$ $∴BE+EC=CF+EC,即BC=EF.$ $又∵ AB∥DE,$ $∴∠ABC=∠DEF.$ $在△ ABC和△DEF中,$ $\begin{cases}{AB=DE\ } \\{∠ABC=∠DEF}\\ {BC=EF} \end{cases}$ $∴△ABC≌△DEF(\mathrm {SAS}),\ $ $∴∠ACB =∠DFE,$ $∴ AC//DF.$
|
|