$证明:∵∠1+∠EAD=180°,$ $∠2+∠BCF=180°,$ $且∠1=∠2,$ $∴∠EAD=∠BCF.$ $又CE=AF,$ $ ∴CE-AC=AF-AC,$ $即AE=CF.$ $在△ADE和△CBF中,\ $ $\begin{cases}{AE=CF,}\\{∠EAD=∠FCB,}\\{ AD=CB,}\end{cases}$ $ ∴△ADE≌△CBF(\mathrm {SAS}),$ $ ∴∠E=∠F,$ $∴DE//BF.$
$证明:∵AD平分∠BAC,$ $∴∠BAD=∠CAD$ $在△ABD和△ACD中,\ $ $\begin{cases}{AB=AC,}\\{∠BAD=∠CAD, }\\{AD=AD,}\end{cases}$ $ ∴△ABD≌△ACD(\mathrm {SAS})$
|
|