$解:(1)10^{-1}=\frac1{10^1}=\frac1{10}=0.1,$
$10^{-2}=\frac1{10^2}=\frac1{100}=0.01,$
$10^{-3}=\frac1{10^3}=\frac1{1000}=0.001,$
$10^{-4}=\frac1{10^4}=\frac1{10000}=0.0001$
$由上观察10^{-n}(n为正整数)可写成小数为$
$10^{-n}=\frac1{10^n}=\frac 1{1\underbrace {000···0}_{n个0}}=\underbrace {0.00···0}_{n个0}1的形式,$
$可得小数点前后连续零的个数与10的指数的绝对值相同.$
$(2)①0.0605=6.05×0.01=6.05×10^{-2}.$
$ ②0.0000000863=8.63×0.00000001=8.63×10^{-8}.$