$解:如图①$
$当△AMN≌△AOC时,AO=AM=4$
$∴M(8,0)$
$C,N关于A点对称$
$∴N(8,\frac {16}{3})$
$如图②$
$当△ANM≌△AOC时$
$AM=AC=\sqrt {OC^{2}+OA^{2}}=\frac {20}{3}$
$设N(t,\frac {4}{3}t-\frac {16}{3})$
$则AN=AO=4=\sqrt {(t-4)^{2}+(\frac {4}{3}t-\frac {16}{3})^{2}}$
$解得t=\frac {32}{5},\frac {4}{3}t-\frac {16}{3}=\frac {16}{5}$
$∴N(\frac {32}{5},\frac {16}{5})$
$如图③$
$此种情况与情况②类似,即这两个△AMN$
$关于点A中心对称$
$∴可求得N(\frac {8}{5},-\frac {16}{5})$
$综上,N(8,\frac {16}{3})或(\frac {32}{5},\frac {16}{5})或(\frac {8}{5},-\frac {16}{5})$