$解:如图,连接PA$
$设S_{△BPD}=a,S_{△APF}=b,S_{△BCP}=c$
$因为AD=2DB,CF=2AF$
$所以S_{△APD}=2S_{△BPD}=2a$
$S_{△CPF}=2S_{△APF}=2b$
$S_{△ACD}=2S_{△BCD}$
$S_{△BCF}=2S_{△ABF}$
$所以2a+b+2b=2(a+c)$
$2b+c=2(a+2a+b)$
$所以2c=3b,c=6a$
$所以2×6a=3b,所以b=4a$
$因为△ABC的面积为1$
$所以3a+3b+c=1,即3a+12a+6a=1$
$解得a=\frac{1}{21}$
$ \begin{aligned}所以S_{四边形ADPF}&=2a+b \\ &=6a \\ &=6×\frac{1}{21} \\ &=\frac{2}{7} \\ \end{aligned}$