$证明:(2) 由题意,得 x y=1, 则 y=\frac {1}{x}$
$把 y=\frac {1}{x} 代入 \frac {2 x}{x+y^2}+\frac {2 y}{y+x^2}得$
$原式 =\frac {2 x}{x+\frac {1}{x^2}}+\frac {\frac {2}{x}}{\frac {1}{x}+x^2}=\frac {2 x^3}{x^3+1}+$ $\frac {2}{x^3+1}=2$
$∴分式 \frac {2 x}{x+y^2} 与 \frac {2 y}{y+x^2} 互为 “ 2 阶分式”$
$(3)∵\frac a{a+4b^2}与\frac {2b}{a^2+2b}互为“1阶分式”,$
$∴\frac a{a+4b^2}+\frac {2b}{a^2+2b}=1$
$∴\frac {a^3+2\ \mathrm {a} b}{(a+4\ \mathrm {b}^2)(a^2+2\ \mathrm {b})}+\frac {2\ \mathrm {a} b+8\ \mathrm {b}^3}{(a+4\ \mathrm {b}^2)(a^2+2\ \mathrm {b})}=1$
$∴\frac {a^3+2\ \mathrm {a} b+2\ \mathrm {a} b+8\ \mathrm {b}^3}{a^3+2\ \mathrm {a} b+4\ \mathrm {a}^2\ \mathrm {b}^2+8\ \mathrm {b}^3}=1$
$ 即 2\ \mathrm {a} b=4\ \mathrm {a}^2\ \mathrm {b}^2$
$ 又∵a, b 为正数$
$∴a b=\frac {1}{2}$