证明:$(1)∵C$是$\widehat{BD}$的中点,
$∴\widehat{CD}=\widehat{BC}.$
$∵AB$是$⊙O$的直径,且$CF⊥AB,$
$∴\widehat{BC}=\widehat{BF},$
$∴\widehat{CD}=\widehat{BF},$
$∴CD=BF.$
∵在$△BFG $和$△CDG $中,$∠F=∠CDG,$$∠FGB=∠DGC,$$BF=CD,$
$∴△BFG≌△CDG.$
$(2)$如图,过$C$作$CH⊥AD$于$H,$连接$AC、$$BC,$
$∵\widehat{CD}=\widehat{BC},$
$∴∠HAC=∠BAC.$
$∵CE⊥AB,$
$∴CH=CE.$
$∵AC=AC,$
$∴Rt△AHC≌Rt△AEC,$
$∴AE=AH.$
$∵CH=CE,$$CD=CB,$
$∴Rt△CDH≌Rt△CBE,$
$∴DH=BE=2,$
$∴AE=AH=2+2=4,$
$∴AB=4+2=6.$
$∵AB$是$⊙O$的直径,
$∴∠ACB=90°,$
$∴∠ACB=∠BEC=90°.$
$∵∠EBC=∠ABC,$
$∴△BEC∽△BCA,$
$∴\frac {BC}{AB}=\frac {BE}{BC},$
$∴BC^2=AB·BE=6×2=12,$
$∴BF=BC=2\sqrt{3}.$