证明:$(1)$连接$OC,$
$∵C$是$\widehat{ACB}$的中点,
$∴\widehat{AC}=\widehat{BC},$
$∴∠COD=∠COE.$
$∵OA=OB,$$AD=BE,$
$∴OD=OE.$
在$△COD$和$△COE$中,
$\begin{cases}{CO=CO,}\\{∠COD=∠COE,}\\{OD=OE,}\end{cases}$
$∴△COD≌△COE(\mathrm {SAS}),$
$∴CD=CE.$
$(2)$如图,连接$OM、$$ON.$
$∵△COD≌△COE,$
$∴∠CDO=∠CEO,$$∠OCD=∠OCE.$
$∵OC=OM=ON,$
$∴∠OCM=∠OMC,$$∠OCN=∠ONC,$
$∴∠OMD=∠ONE.$
$∵∠ODC=∠DMO+∠MOD,$$∠CEO=∠CNO+∠NOE,$
$∴∠MOD=∠NOE,$
$∴\widehat{AM}=\widehat{BN}.$