解:∵$DE//BC,$$DF//AC$
∴四边形$CEDF$是平行四边形
∴$DE=CF$
∴$\frac {AD}{DB}=\frac {AE}{EC},$$\frac {AB}{AD}=\frac {BC}{DE}$
∴$\frac {AD+BD}{AD}=\frac {BF+CF}{DE}$
$ 1+\frac {BD}{AD}=1+\frac {BF}{DF},$即$\frac {BD}{AD}=\frac {BF}{DE}$
∴$\frac {AD}{BD}=\frac {DE}{BF}$
∵$DF//AC $
∴$\frac {DF}{AC}=\frac {BF}{BC}$
即$(1)(2)(4)$成立,$(3)$不成立