电子课本网 第7页

第7页

信息发布者:
$​=\frac {x-1}{x} · \frac {x^2}{x-1}​$
$​=x​$
$​=\frac {1}{x+1} - \frac {x+3}{x+1} · \frac {(x+1)(x-1)}{(x+3)(x-1)}​$
$​=\frac {x}{x+1} -1​$
$​=\frac {x}{x+1} -\frac {x+1}{x+1}​$
$​= -\frac {1}{x+1}​$
$​=\frac {a}{a+1}- \frac {a-1}{a} · \frac {a(a+2)}{(a+1)(a-1)} ​$
$​=\frac {a}{a+1} -\frac {a+2}{a+1} ​$
$​=\frac {a-a-2}{a+1}​$
$​=- \frac {2}{a+1}​$
$​=[ \frac {a-2}{a+2}- \frac {a+8}{(a+2)^2} ] · \frac {a+2}{a-4}​$
$​= \frac {(a+2)(a-2)-(a+8)}{(a+2)^2} · \frac {a+2}{a-4}​$
$​= \frac {a^2-a-12}{a+2} · \frac {1}{a-4}​$
$​= \frac {(a-4)(a+3)}{a+2} · \frac {1}{a-4}​$
$​= \frac {a+3}{a+2}​$
$ \begin{aligned}解:​(1)​原式​&=[ \frac {3(x-1)}{(x-1)^2} -\frac {3}{(x-1)^2} ] · \frac {x-1}{x-2}​ \\ ​&= \frac {3x-6}{(x-1)^2} · \frac {x-1}{x-2}​ \\ ​&= \frac {3(x-2)(x-1)}{(x-1)^2(x-2)}​ \\ ​&= \frac {3}{x-1}​ \\ \end{aligned}$
$当​x=-1​时,原式​=\frac {3}{-1-1}=- \frac {3}{2}​$
$ \begin{aligned}解:​原式​&=\frac {a-3}{3a(a-2)} ÷ \frac {(a+2)(a-2)-5}{a-2}​ \\ ​&=\frac {a-3}{3a(a-2)} · \frac {a-2}{(a+3)(a-3)} ​ \\ ​&=\frac {1}{3a(a+3)}​ \\ \end{aligned}$
$由​a^2+3a+2=0,​得到​a^2+3a=-2,​即​a(a+3)=-2​$
$则原式​=- \frac {1}{6}​$